Parametrix approximations for option prices

FRANCESCO CORIELLI
Istituto di Metodi Quantitativi, Università Bocconi

ANDREA PASCUCCI
Dipartimento di Matematica, Università di Bologna *

Abstract

We propose the use of a classical tool in PDE theory, the parametrix method, to build approximate solutions to generic parabolic models for pricing and hedging contingent claims. We obtain an expansion for the price of an option using as starting point the classical Black&Scholes formula. The approximation can be truncated to any number of terms and easily computable error measures are available.

1 Introduction and motivation

Under the standard dynamically complete market hypotheses (see e.g. [9], Sects. 5.2 and 5.7), the forward price $O_t = f(S_t, T - t)$ computed at time t of an European option expiring at time T with payoff $H(S_T)$, where the underlying asset S evolves according to the stochastic differential equation

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t,$$

(1.1)

is given by

$$\tilde{E}_t(H(S_T))$$

(1.2)

where \tilde{E} represents the expected value with respect to the martingale measure under which the dynamics of the forward price of the underlying is driftless. Accordingly, in the case of null riskless interest rate, f is also the solution of the Cauchy problem

$$\begin{cases}
\partial_t f = \frac{\sigma^2}{2} \partial_{SS} f, \\
f(x, 0) = H(x).
\end{cases}
$$

(1.3)

From both (1.2) or (1.3) we have the representation

$$f(S_t, t) = \int_{\mathbb{R}} H(x) \Gamma(S_t, t; x, 0) dx,$$

(1.4)

*Piazza di Porta S. Donato 5, 40126 Bologna (Italy). E-mail: pascucci@dm.unibo.it
where $\Gamma(S, t; x, 0)$ is the transition density of S_t from $(x, 0)$ which corresponds to the so called “fundamental solution” of the PDE in (1.3).

As a matter of fact the fundamental solution Γ is explicitly known only for a rather small set of models. Among these the most relevant cases are the arithmetic and geometric Brownian motions (Gaussian and lognormal densities), the general linear case (affine models studied e.g. in [6]), the square root process (e.g. [3]) and classes of models derived via transforms from these models (see e.g. [1]). In view of the paramount advantages, both in terms of understanding and computation time, given by the existence of an analytical solution for (1.3), actual modeling has largely been restricted to this rather small set of diffusions. On the other hand the analytical tractability of these models is not accompanied by good statistical properties in the sense that the distributions implied by these models give poor fit to actual market data.

This motivates a growing interest for models whose solution can be computed only by numerical methods (deterministic or Montecarlo based). A major problem which severely limits the use of these models is that, while their practical relevance has been found in the valuation of exotic or very far from the money vanilla options, the numerical burden implied by their use for such payoffs is still by far too big to allow widespread application. It is to be noticed that such a burden can be excessive even in the case of standard model when applied to the computation of hedging parameters for some exotic payoff.

Even if we do not consider the numerical problem, a second relevant obstacle to the implementation of more statistically satisfactory but less tractable models is that the lack of analytical solution severely restricts the ability of the practitioner to understand, pending the reaction times allowed by the market, the implications of a given model and its possible weak points. This is relevant, in particular, when a real time position risk management is required.

A third and connected problem with analytically untractable models is that they do not allow for an easy valuation of the consequences of model misspecification. In an applied milieu where model risk management is becoming a central portion of the financial decision making process, such weakness is rapidly becoming an heavy burden for elastic but not tractable models.

Two possible ways out of this problem can be suggested. The first one is to extend the class of analytically solvable models by the use of properly chosen transforms; the second one is to develop tools capable of calibrating analytically computable approximations to non analytically computable models and to evaluate the error of this approximation.

This paper is concerned with the second alternative. We suggest the use of a classical tool in PDE theory: the parametrix expansion. A parametrix expansion can be used to build an approximate fundamental solution to a generic parabolic PDE using as starting point the explicit solution of a simpler parabolic PDE. The approximation can be truncated to any number of terms and easily computable error measures are available. A comprehensive presentation of the parametrix method for uniformly parabolic PDEs can be found, for instance, in [7]: in [4] a more recent presentation of this technique applied to a wider class of (possibly degenerate) PDEs can be found.

While well-known in the classical theory of parabolic PDEs, the parametrix series is, as far as we know, unknown in the field of mathematical finance (with the exception of [2]). Apart from being a tool for the approximate solution to pricing problems, the parametrix series can be of use as a tool for model risk management and as a way to unify a number of sparse results about approximate option valuation already available in the financial literature under a common principle. A welcome bonus of the parametrix is that, far from being an abstract mathematical tool, it yields to an
interesting financial interpretation.

The paper is organized as follows. In Section 2, we give a heuristic derivation of the parametrix series, connected to the evaluation of pricing and hedging errors implied by the use of a “wrong” model. We also give a financial interpretation to the derivation of the parametrix. In Section 3, we formally introduce the parametrix series, derive it under conditions suitably general but easy to assess in the case of financial application and present explicit valuations of error terms: in this section our main results, the forward and backward parametrix expansion Theorems 3.6 and 3.14 are stated. In Section 4, we use the parametrix series to approximate the solution for already solvable models and compare the resulting approximations with exact results. In Section 5 we conclude.

2 A heuristic derivation of the parametrix series

The purpose of this section is to stress the financial intuition underlying the meaning and the derivation of the parametrix expansion. In so doing it is sufficient for us to work in the one dimensional (space variable) case. In the following section the parametrix will be derived in its full generality for the case of any finite number of space variables.

We begin by noticing that a parametrix expansion can be computed both for the standard parabolic PDE implied in a valuation problem and for its adjoint PDE. While the fundamental solutions of the two equations are strictly related, the two parametrix approximations are distinct and offer two slightly different and very interesting financial interpretations so we will discuss both.

Let us start by sketching the derivation of the parametrix for the standard parabolic PDE. We are interested in the fundamental solution \(\Gamma = \Gamma(z; \zeta) \) where \(z = (x, t) \) and \(\zeta = (\xi, \tau) \in \mathbb{R} \times \mathbb{R} \) of \(L

\[Lu = a(z)\partial_{xx}u - \partial_t u = 0, \] (2.1)

that is: \(L \Gamma = 0 \) and for every suitable function \(H(x) \) the solution of the Cauchy problem

\[
\begin{align*}
Lu &= 0, & x \in \mathbb{R}, \ t > 0, \\
u(x, 0) &= H(x), & x \in \mathbb{R},
\end{align*}
\] (2.2)

is given by

\[
u(x, t) = \int_{\mathbb{R}} H(\xi)\Gamma(x, t; \xi, 0)d\xi, \quad x \in \mathbb{R}, \ t \geq 0.
\] (2.3)

In financial terms, formula (2.3) gives the (forward) price at time to maturity \(t \) for an European option expiring at time to maturity 0 with payoff \(H \).

Suppose now that \(a \) is such that equation (2.2) cannot be solved explicitly. It is then inviting to find an approximation formula for (2.3) whose first term is given by, or at least similar to, the Black&Scholes formula. In the sequel we assume \(\zeta = (\xi, 0) \) and use the notation \(z_j = (x_j, t_j) \) for \(j \in \mathbb{N} \).

The parametrix approximation is based on two ideas. The first one is to locally approximate \(\Gamma(z; \zeta) \) by the so-called parametrix \(Z(z; \zeta) = \Gamma_w(z; \zeta) \) where \(\Gamma_w \) is the fundamental solution to the
\[L_w = a(w) \partial_{xx} - \partial_t. \]

The second idea is that of supposing that the fundamental solution \(\Gamma \) of \(L \) is in the form (recall that \(\zeta = (\xi, 0) \))

\[\Gamma(z; \zeta) = Z(z; \zeta) + \int_{0}^{t} \int_{\mathbb{R}} Z(z; z_0) \Phi(z_0; \zeta) \, dz_0. \]

(2.5)

In order to identify \(\Phi \) we notice that from \(L\Gamma = 0 \) in \(\mathbb{R} \times]0, t[\), we get

\[0 = LZ(z; \zeta) + L \int_{0}^{t} \int_{\mathbb{R}} Z(z; z_0) \Phi(z_0; \zeta) \, dz_0. \]

(2.6)

But formally it holds

\[L \int_{0}^{t} \int_{\mathbb{R}} Z(z; z_0) \Phi(z_0; \zeta) \, dz_0 = -\Phi(z; \zeta) + \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_0) \Phi(z_0; \zeta) \, dz_0 \]

(2.7)

so that

\[\Phi(z; \zeta) = LZ(z; \zeta) + \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_0) \Phi(z_0; \zeta) \, dz_0. \]

(2.8)

Formula (2.8) yields an iteration on \(\Phi \) so that:

\[\Phi(z; \zeta) = LZ(z; \zeta) + \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_0) LZ(z_0; \zeta) \, dz_0 + \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_1) \int_{0}^{t_1} \int_{\mathbb{R}} LZ(z_1; z_0) \Phi(z_0; \zeta) \, dz_0 \, dz_1 \]

\[= LZ(z; \zeta) + \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_0) LZ(z_0; \zeta) \, dz_0 \]

\[+ \sum_{n=0}^{\infty} \int_{0}^{t} \int_{\mathbb{R}} LZ(z; z_{n+1}) \int_{0}^{t_{n+1}} \int_{\mathbb{R}} LZ(z_{n+1}; z_n) \cdots \int_{0}^{t_1} \int_{\mathbb{R}} LZ(z_1; z_0) LZ(z_0; \zeta) \, dz_0 \cdots dz_n dz_{n+1}. \]

(2.9)

In terms of formula (2.3) this implies an expansion of the option price given by:

\[u(z) = \sum_{n=0}^{\infty} u_n(z) \]

(2.10)
where
\[u_0(z) = \int_\mathbb{R} H(\xi) Z(z; \xi, 0) d\xi, \]
\[u_1(z) = \int_0^t \int_\mathbb{R} Z(z; \xi) L u_0(\xi) d\xi, \]
and in general, for \(n \in \mathbb{N} \),
\[u_n(z) = \int_0^t \int_\mathbb{R} Z(z; \xi) L U_{n-1}(\xi) d\xi, \]
\[U_{n-1}(z) := \sum_{k=0}^{n-1} u_k(z). \]
(2.12)

Indeed, by (2.5) and (2.9), we have
\[u_1(z) = \int_\mathbb{R} H(\xi) \int_0^t \int_\mathbb{R} Z(z; \xi) L Z(z_0; \xi, 0) d\xi d\xi_0 = \int_0^t \int_\mathbb{R} Z(z; z_0) L \int_\mathbb{R} H(\xi) Z(z_0; \xi, 0) d\xi d\xi_0, \]
that proves (2.11). Moreover
\[u_2(z) = \int_\mathbb{R} H(\xi) \int_0^t \int_\mathbb{R} Z(z; z_1) \int_0^{t_1} \int_\mathbb{R} L Z(z_1; z_0) L Z(z_0; \xi, 0) d\xi_0 d\xi_1 d\xi = \]
\[= \int_0^t \int_\mathbb{R} Z(z; z_1) \int_0^{t_1} \int_\mathbb{R} L Z(z_1; z_0) L Z(z_0; \xi, 0) d\xi d\xi_1 d\xi_0 = u_0(z_1), \]
\[= u_1(z_1) \]
\[+ L \int_0^{t_1} \int_\mathbb{R} Z(z_1; z_0) L u_0(z_0) d\xi_0 d\xi_1, \]
\[= u_1(z_1) \]
and this proves (2.12) for \(n = 2 \). The general case follows by induction.

This is the expansion which is usually used in the classical PDEs’ theory to prove the existence of a (fundamental) solution to \(L \). Before interpreting the result let us examine the equivalent expansion derived from the adjoint PDE. The use of the adjoint parametrix seems to be convenient by several points of view: first of all, we are able to derive an approximating expansion whose first term is given exactly by the Black&Scholes formula, while the subsequent terms can be expressed as solutions to suitable Cauchy problems related to constant coefficients operators. Secondly, the approximating terms generated in this way are convolutions of a Gaussian function \(\Gamma_z(z; \cdot) \) for
fixed z: this seems to be convenient from a numerical point of view since we may rely upon several known efficient numerical techniques. We define the \textit{backward parametrix}

$$P(z; \zeta) = \Gamma_z(z; \zeta).$$

(2.13)

In the next section we prove that the solution to the option pricing problem has an expansion of the form (2.10) where now

$$u_0(z) = \int_{\mathbb{R}} H(\xi) P(z; \xi, 0) d\xi,$$

(2.14)

and

$$u_n(z) = \int_0^t \int_{\mathbb{R}} P(z; \zeta) L U_{n-1}(\zeta) d\zeta, \quad U_{n-1}(z) := \sum_{k=0}^{n-1} u_k(z), \quad n \in \mathbb{N}. \quad (2.15)$$

The main differences between the two parametrix expansions hinted before are now clear. Each term in the expansion is an “expected value” with respect to the distributions with density $Z(z; \zeta)$ or $P(z; \zeta)$. But, while $P(z; \zeta)$ is the same Gaussian density for each value of the integration variable (z is frozen and the integration is performed varying ζ and so is a true PDF, $Z(z; \zeta)$ is a different Gaussian (different variance) for each value of the integrating variable ζ.

Let us examine the first term of the expansion for the parametrix Z:

$$u_0(z) = \int_{\mathbb{R}} H(\xi) Z(z; \xi, 0) d\xi.$$

(2.16)

Since the explicit expression of $Z(z; \xi, 0) = \Gamma_{(\xi,0)}(z; \xi, 0)$ is known,

$$\Gamma_{(\xi,0)}(x, t; \xi, 0) = \frac{1}{\sqrt{4\pi ta(\xi, 0)}} \exp\left(-\frac{(x - \xi)^2}{4ta(\xi, 0)}\right), \quad t > 0,$$

we see that u_0 in (2.16) is very similar to the solution of a Cauchy problem for a constant coefficients operator. On the other hand, the integration in (2.16) is performed with respect to the variable ξ which also appears in $L_{(\xi,0)}$ as the point where the operator L is frozen. Hence the first term of the expansion is an “expected value” of the terminal payoff which uses as density a Gaussian with a different volatility (corresponding to the “true” diffusion coefficient) for each point in the integration range. Due to this reason this “state dependent” Gaussian is not a density as it is nonnegative but does not integrate, in general, to one (it is obviously possible to normalize it).

This seems quite sensible a starting point and can obviously compared with standard “implied volatility” approximations. With implied volatility we use a different Gaussian distribution (for $\log S$) for each strike. Here the suggestion is to use the same distribution but with a different volatility for each terminal value of the stock. As we will see in the empirical section of the paper, this rough, zero order, approximation can give good results for interesting payoffs.

Let us now pass to the adjoint parametrix expansion zero order term:

$$u_0(z) = \int_{\mathbb{R}^N} H(\xi) P(z; \zeta) d\xi.$$
Here the interpretation is straightforward: the zero order term is simply the Black&Scholes option value. Indeed since

\[P(z; \zeta) = \Gamma_{(x,t)}(x, t; \xi, 0), \]

then the parametrix \(P(z; \zeta) \) is the same density for the full range of the integrating variable \(\xi \) and is the terminal log-price density corresponding to the heat operator frozen at \((x, t)\).

Next we consider the following terms in the expansions. Both expansions are similar in that each new term is an expected value. The difference that makes the adjoint parametrix more readable is that in that case the term is a true expected value (with respect to the same “frozen” Gaussian \(P(z; \zeta) \)) while in the case of the standard parametrix, \(Z(z; \xi, 0) \) does not correspond to an exact density.

Since each new term can be read as the value (exact or approximate) of a new option in a Black&Scholes world, it is interesting to understand the meaning of such options. The solution to this problem comes from the understanding how the \(L \) operator (the original operator for both expansions) acts.

In both expansions \(L \) acts on the first argument of both \(P \) and \(Z \) that is, on the argument not involved in the expectation integral. Moreover (cf. (2.12)) the operator \(L \) in the term of order \(n \) acts on the “option approximation” derived up to order \(n - 1 \).

Each action of the \(L \) operator can be interpreted as a check of the fact that the approximation of order \(n - 1 \) satisfies \(LU_{n-1} = 0 \). In other words \(LU_{n-1} \) is a measure of the error implied in supposing that \(U_{n-1} \) satisfies \(LU_{n-1} = 0 \). This represents a “transaction cost” for the new option. This error is a function of the variable on which \(L \) acts and the term \(u_n \) is then computed as the expected value of the error using the \(P \) density or the \(Z \) “density”.

We see how the parametrix expansion partitions the value of a given option computed in a non Black&Scholes world (the governing PDE is not the heat equation) into a series of option values each computed in the Black&Scholes world. This is exact in the case of the adjoint parametrix and approximately exact, if we recall that \(Z \) is not a density, in the standard parametrix case. The transaction cost for each option is a valuation of the error made by valuing the option implied in the previous term in the Black&Scholes world and not in the world described by \(L \).

In the following section we will see how it is possible to bound the overall error derived by truncating the series at the \(n^{th} \) term with explicit and easily computable bounds uniformly decreasing in \(n \). Moreover in the applications section we will see how the iterative nature of the parametrix series definition allows a fast implementation of the valuation algorithm.

Even at this intuitive level we see how the parametrix series can become a useful tool in model risk management. Suppose a risk manager is willing to use a price model based on a given operator \(L \) which is believed to faithfully represent the statistical properties of observed underlying and options prices. It is likely that this operator will not yield to explicit computation. The risk manager can then compute a number of terms in the parametrix series each of which will be the value of a (Black&Scholes) option and will be hedgeable as such. The risk manager will also be able to compute a measure of error, which, as we will see in the next section, will be interpretable as the value of another option computed in the Black&Scholes world. As such it will be easy for the risk manager to interpret this option/error value as the price of the approximate model valuation and hedge it, if necessary.
3 Forward and backward parametrix expansion

In this section we present the parametrix expansion in its full generality. Consider a parabolic differential equation in the form

$$Lu \equiv \sum_{i,j=1}^{N} a_{ij}(z) \partial_{x_i} x_j u + \sum_{i=1}^{N} b_{i}(z) \partial_{x_i} u + c(z) u - \partial_{t} u = 0,$$ \hspace{1cm} (3.1)

where $A(z) = (a_{ij}(z))$ is a symmetric and positive definite matrix. Throughout the section we systematically denote by $z = (x, t)$ and $\zeta = (\xi, \tau)$ the points in \mathbb{R}^{N+1}. We also denote by $\lambda_1(z), \ldots, \lambda_N(z)$ the eigenvalues of $A(z)$ and set

$$m := \inf_{z \in \mathbb{R}^{N+1}} \lambda_i(z), \quad M := \sup_{z \in \mathbb{R}^{N+1}} \lambda_i(z) \mu(z).$$

Our main hypotheses are the following:

[H1] M, m are positive and finite.

[H2] the coefficients of L are bounded functions: moreover, $a_{ij} \in C^{1,\frac{1}{2}}(\mathbb{R}^{N+1})$ that is

$$|a_{ij}(x, t) - a_{ij}(x', t')| \leq \alpha \left(|x - x'| + |t - t'|^{\frac{1}{2}} \right), \quad \forall (x, t), (x', t') \in \mathbb{R}^{N+1}, \; i, j = 1, \ldots, N,$$ \hspace{1cm} (3.2)

for some positive constant α.

As a consequence of [H1] we have the usual uniformly parabolicity condition:

$$m|\eta|^2 \leq \sum_{i,j=1}^{N} a_{ij}(z) \xi_i \xi_j \leq M|\eta|^2, \quad \forall \xi \in \mathbb{R}^N, \; z \in \mathbb{R}^{N+1}. \hspace{1cm} (3.3)$$

It is known that, under the above hypotheses, the operator L has a fundamental solution $\Gamma(z; \zeta)$. Given $w \in \mathbb{R}^{N+1}$, we denote by $\Gamma_w(z; \zeta)$ the fundamental solution to the frozen operator L_w defined by

$$L_w = \sum_{i,j=1}^{N} a_{ij}(w) \partial_{x_i} x_j - \partial_{t};$$ \hspace{1cm} (3.4)

then we have $\Gamma_w(z; \zeta) = \Gamma_w(z - \zeta)$ where

$$\Gamma_w(x, t) \equiv \Gamma_w(x, t; 0) = \frac{(4\pi t)^{-\frac{N}{2}}}{\sqrt{\det A(w)}} \exp \left(- \frac{\langle A^{-1}(w)x, x \rangle}{4t} \right), \quad x \in \mathbb{R}^N, \; t > 0.$$ \hspace{1cm} (3.5)

Given a constant $\mu > 0$, we also denote by Γ^μ the fundamental solution to the heat operator

$$\mu \sum_{i=1}^{N} \partial_{x_i} x_i - \partial_{t}.$$
Lemma 3.1. For every $z, \zeta, w \in \mathbb{R}^{N+1}$ with $z \neq \zeta$, it holds
\[
\left(\frac{M}{m} \right)^{\frac{N}{2}} \Gamma^m(z; \zeta) \leq \Gamma_w(z; \zeta) \leq \left(\frac{M}{m} \right)^{\frac{N}{2}} \Gamma^M(z; \zeta).
\]

Proof. We only prove the second inequality in the case $\zeta = 0$. The thesis follow directly from condition (3.3) keeping in mind formula (3.5): indeed we have
\[
\Gamma_w(z) \leq \frac{1}{(4\pi tm)^{\frac{N}{2}}} \exp \left(-\frac{|x|^2}{4tm} \right) = \left(\frac{M}{m} \right)^{\frac{N}{2}} \Gamma^M(z).
\]

Lemma 3.2. For every $\varepsilon, \mu > 0$ and $n \in \mathbb{N} \cup \{0\}$ it holds
\[
\left(\frac{|x|}{\sqrt{t}} \right)^n \Gamma^\mu(x, t) \leq \left(\frac{n}{\varepsilon} \right)^n \left(\frac{\mu + \varepsilon}{\mu} \right)^{\frac{N}{2}} \Gamma^{\mu+\varepsilon}(x, t),
\]
for any $x \in \mathbb{R}^N$ and $t > 0$.

Proof. Setting $a = \frac{|x|}{\sqrt{t}}$, we have
\[
\left(\frac{|x|}{\sqrt{t}} \right)^n \Gamma^\mu(z, 0) = a^n(4\pi \mu t)^{-\frac{N}{2}} \exp \left(-\frac{a^2}{4\mu} \right) \leq (4\pi \mu t)^{-\frac{N}{2}} \exp \left(-\frac{a^2}{4(\mu + \varepsilon)} \right) \sup_{\mathbb{R}_+} \Phi,
\]
where
\[
\Phi(a) = a^n \exp \left(-\left(\frac{1}{4\mu} - \frac{1}{4(\mu + \varepsilon)} \right) a^2 \right).
\]
The thesis follows since a straightforward computation shows that Φ attains a global maximum at $\bar{a} = \sqrt{\frac{2n\mu (\mu + \varepsilon)}{\varepsilon}}$ and
\[
\Phi(\bar{a}) = \left(\frac{2n\mu (\mu + \varepsilon)}{\varepsilon} \right)^{\frac{n}{2}} \left(\frac{n}{\varepsilon} \right)^n (\mu + \varepsilon)^n.
\]

3.1 Forward parametrix expansion

For $z \neq \zeta$, we define the (forward) parametrix
\[
Z(z; \zeta) = \Gamma_\zeta(z; \zeta).
\]

Notation 3.3. In order to avoid confusion, when necessary, we write $L^{(z)}$ in order to indicate that the operator L is acting in the variable z.

We remark explicitly that
\[
L^{(z)}_\zeta Z(z; \zeta) = 0, \quad \text{for } z \neq \zeta.
\]
We first prove some preliminary result will be crucial in the development of the parametrix expansion.
Lemma 3.4. For every \(\varepsilon > 0 \) and \(i, j = 1, \ldots, N \) it holds
\[
|\partial_x \Gamma_w(z; \zeta)| \leq \frac{1}{2\sqrt{\varepsilon(t - \tau)}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 1} \Gamma^{M+\varepsilon}(z; \zeta),
\]
(3.9)
\[
|\partial_{x,x} \Gamma_w(z; \zeta)| \leq \frac{1}{\varepsilon(t - \tau)} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 2} \Gamma^{M+\varepsilon}(z; \zeta),
\]
(3.10)
for any \(z, \zeta, w \in \mathbb{R}^{N+1} \) with \(t > \tau \).

Proof. For sake of simplicity, we prove the above estimates in the case \(\zeta = 0 \). We have
\[
|\partial_x \Gamma_w(z)| = \frac{1}{2} \left| \frac{(A^{-1}(w)x)_i}{t} \right| \Gamma_w(z) \leq
\]
(by Lemma 3.1)
\[
\leq \frac{1}{2m\sqrt{t}} \left(\frac{M}{m} \right)^{\frac{N}{2}} \frac{|x|}{\sqrt{t}} \Gamma^{M}(z)
\]
and (3.10) follows applying Lemma 3.2 with \(\mu = M \) and \(n = 1 \).

Moreover
\[
|\partial_{x,x} \Gamma_w(z)| = \frac{1}{2t} \left| A^{-1}(w)_{ij} + \frac{1}{2t} (A^{-1}(w)x)_i (A^{-1}(w)x)_j \right| \Gamma_w(z) \leq \frac{1}{2t} \left(\frac{1}{m} + \frac{|x|^2}{2m^2t} \right) \Gamma_w(z),
\]
and (3.9) easily follows by Lemmas 3.1 and 3.2 with \(\mu = M \).

Lemma 3.5. For every positive \(\varepsilon \), we have
\[
|L^{(z)}Z(z; \zeta)| \leq \frac{\eta_{e}}{\sqrt{t - \tau}} \Gamma^{M+\varepsilon}(z; \zeta), \quad \forall z, \zeta \in \mathbb{R}^{N+1}, \ t > \tau,
\]
(3.11)
where
\[
\eta_{e} := \alpha N^2 \left(\frac{2}{\varepsilon} \right)^{\frac{N}{2}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 2} \left(M + \varepsilon + \sqrt{\frac{\varepsilon}{2}} \right) + \beta \frac{N}{2\sqrt{\varepsilon}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 1} + \gamma \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} \sqrt{t - \tau}}
\]
(3.12)
and
\[
\beta := \sup_{i=1, \ldots, N} |b_i(z)|, \quad \gamma := \sup_{z \in \mathbb{R}^{N+1}} |c(z)|
\]
and \(\alpha \) is the constant in (3.2).

Proof. For \(t > \tau \), we have
\[
|LZ(z; \zeta)| = |L - L_{\zeta}Z(z; \zeta)| \leq I_1 + I_2 + I_3
\]
where
\[
I_1 = \sum_{i,j=1}^{N} |a_{ij}(z) - a_{ij}(\zeta)| \left| \partial_{x,x} Z(z; \zeta) \right| \leq
\]
10
\[
\leq \alpha N^2 \left(|x - \xi| + \sqrt{t - \tau} \right) \max_{i,j} |\partial_{x_i x_j} Z(z; \zeta)| \leq
\]

(by Lemma 3.4)
\[
\leq \frac{\alpha N^2}{\varepsilon} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 2} \left(\frac{M + 2\varepsilon}{M + \varepsilon} \right) \left(1 + \frac{M + 2\varepsilon}{\sqrt{\varepsilon}} \right) \Gamma^{M+\varepsilon}(z; \zeta) \leq
\]

(by Lemma 3.2)
\[
\leq \frac{\alpha N^2}{\varepsilon^2} \left(\frac{M + 2\varepsilon}{m} \right)^{\frac{N}{2} + 2} \left(M + 2\varepsilon + \sqrt{\varepsilon} \right) \Gamma^{M+2\varepsilon}(z; \zeta).
\]

Moreover, by Lemma 3.4 we have
\[
I_2 = \sum_{i=1}^{N} |b_i(z)| |\partial_x Z(z; \zeta)| \leq \beta \frac{N}{2 \sqrt{\varepsilon(t - \tau)}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N+1}{2}} \Gamma^{M+\varepsilon}(z; \zeta);
\]

finally, by Lemma 3.1 we have
\[
I_3 = |c(z)| Z(z; \zeta) \leq \gamma \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} \Gamma^{M+\varepsilon}(z; \zeta).
\]

We can now state the forward parametrix expansion theorem.

Theorem 3.6. Assume hypotheses \([H1]\) and \([H2]\). Then for every \(\zeta \in \mathbb{R}^{N+1}\), the following expansion of the fundamental solution \(\Gamma\) holds
\[
\Gamma(z; \zeta) = Z(z; \zeta) + \int_{\tau}^{t} \int_{\mathbb{R}^N} Z(z; w) \Phi(w; \zeta) dw, \quad t > \tau,
\]

where
\[
\Phi(z; \zeta) = \sum_{k=1}^{+\infty} (LZ)_k(z; \zeta),
\]

with
\[
(LZ)_1(z; \zeta) = L^{(z)} Z(z; \zeta),
\]
\[
(LZ)_{k+1}(z; \zeta) = \int_{\tau}^{t} \int_{\mathbb{R}^N} L^{(z)} Z(z; w)(LZ)_k(w; \zeta) dw,
\]
and, for every $T > 0$, the series in (3.14) converges uniformly in the strip $\mathbb{R}^N \times [\tau, \tau + T]$. Moreover, for every positive ε, we have the following estimate for the approximation truncated at the n-th term:

$$
\left| \Gamma(z; \zeta) - Z(z; \zeta) \right| \leq \sqrt{\frac{\pi}{2}} \left(M + \varepsilon \right)^{N/2} \left(\eta \sqrt{2\pi(t - \tau)} \right)^{N} \Gamma^{M+\varepsilon}(z; \zeta)
$$

for $t > \tau$, where η is defined in (3.12).

$$
f_n(\eta) = e^{\frac{\eta^2}{2}} (\eta + 1) \left(\frac{n+1}{2} \right)^n \left(\frac{n+1}{2} \right)!
$$

and $[a]$ denotes the integer part of $a \in \mathbb{R}$.

Remark 3.7. We remark explicitly that, when $\eta = \eta \sqrt{2\pi(t - \tau)} \ll 1$ in (3.16), then the rate of convergence of the parametrix approximation is very fast. This is the case, for instance, when $t - \tau \ll 1$, i.e. for short time to maturity.

As a consequence of Theorem 3.6, we have the following forward parametrix expansion for solutions to the Cauchy problem for L.

Corollary 3.8. The solution to the Cauchy problem

$$
\begin{cases}
Lu(x,t) = 0, & x \in \mathbb{R}^N, \ t > 0, \\
u(x,0) = H(x), & x \in \mathbb{R}^N,
\end{cases}
$$

has an expansion of the form (2.10)-(2.11)-(2.12).

The proof of Theorem 3.6 is based on the following preliminary result.

Lemma 3.9. For every $\varepsilon > 0$ and $k \geq 1$ the following estimate for the term $(LZ)_k$ in (3.14) holds:

$$
|LZ)_k(z; \zeta)| \leq \frac{\Gamma_E \left(\frac{k}{2} \right)}{\Gamma_E \left(\frac{\eta}{2} \right)} \left(\frac{t - \tau}{m} \right)^{1-k} \Gamma^{M+\varepsilon}(z; \zeta), \quad \forall z, \zeta \in \mathbb{R}^{N+1}, \ t > \tau,
$$

where η is defined in (3.12) and Γ_E denotes the Euler’s Gamma function.

Proof. We prove (3.18) by induction on k. The case $k = 1$ was proved in Lemma 3.5. Let us now assume that (3.18) holds for k and prove it for $k + 1$. We have

$$
|LZ)_{k+1}(z; \zeta)| = \left| \int_\tau^t \int_{\mathbb{R}^N} L(z; w)(LZ)_k(w; \zeta)dw \right|
$$

(by Lemma 3.5, the inductive hypothesis and denoting $(y,s) = w$)

$$
\leq \eta \sqrt{\frac{\pi}{2}} \left(\frac{n+1}{2} \right)^n \left(\frac{n+1}{2} \right)!
$$

for $t > \tau$, where η is defined in (3.12) and Γ_E denotes the Euler’s Gamma function.
(by the reproduction property\(^3\) for \(\Gamma^{M+\varepsilon}\) and by the change of variable \(s = (1-r)\tau + rt\))

\[
\frac{\eta_e^{k+1}}{(t - \tau)^{1-k+1}} \frac{\Gamma_E \left(\frac{k}{2} \right)}{\Gamma_E \left(\frac{k+1}{2} \right)} \int_0^1 \frac{1}{r^{1-\frac{k}{2}} \sqrt{1 - r}} dr \, \Gamma^{M+\varepsilon}(z; \zeta),
\]

and the thesis follows by the known properties\(^4\) of the Euler’s Gamma function.

\(\square\)

Proof. (of Theorem 3.6)

Estimate (3.18) directly implies the convergence of the series (3.14) uniformly in \(S_{\tau, \tau + T}\) for every fixed \(\zeta \in \mathbb{R}^{N+1}\) and \(T > 0\). This also implies that \(\Phi\) solves the integral equation

\[
\Phi(z; \zeta) = L(z) Z(z; \zeta) + \int_\tau^t \int_{\mathbb{R}^N} L(z; w) \Phi(w; \zeta) dw.
\]

The hard part of the proof consists in showing that

\[
G(z; \zeta) := Z(z; \zeta) + \int_\tau^t \int_{\mathbb{R}^N} Z(z; w) \Phi(w; \zeta) dw,
\]

is a fundamental solution of \(L\): this is based on the study of some singular integral and can be performed following the classical theory (see, for instance, [7] or the more recent exposition in [5]).

Next we prove (3.15):

\[
\left| \Gamma(z; \zeta) - Z(z; \zeta) - \sum_{k=1}^{n-1} \int_\tau^t \int_{\mathbb{R}^N} Z(z; w)(LZ)_k(w; \zeta) dw \right| \leq \sum_{k=n}^\infty \int_\tau^t \int_{\mathbb{R}^N} Z(z; w) |(LZ)_k(w; \zeta)| dw
\]

(by Lemma 3.1, estimate (3.18) and the reproduction property)

\[
\leq \left(\frac{M + \varepsilon}{m} \right)^N \Gamma^{M+\varepsilon}(z; \zeta) \sum_{k=n}^\infty \int_\tau^t \frac{\Gamma_E \left(\frac{k}{2} \right)}{\Gamma_E \left(\frac{k+1}{2} \right)} \frac{\eta_e^k}{(s - \tau)^{1-\frac{k}{2}}} ds
\]

(\(\text{using the properties of the Gamma function}\(^5\))

\[
= \left(\frac{M + \varepsilon}{m} \right)^N \Gamma^{M+\varepsilon}(z; \zeta) \sqrt{\frac{2}{\pi}} \sum_{k=n}^\infty \left(\frac{\eta_e \sqrt{2\pi(t - \tau)}}{k!!} \right)^k.
\]

\(3.19\)

\(^3\) For every \(x, \xi \in \mathbb{R}^N\) and \(\tau < s < t\), it holds

\[
\int_{\mathbb{R}^N} \Gamma^{M+\varepsilon}(z; y, s) \Gamma^{M+\varepsilon}(y, \xi, \zeta) dy = \Gamma^{M+\varepsilon}(z; \zeta).
\]

\(^4\) It holds

\[
\int_0^1 \frac{1}{r^{1-\frac{k}{2}} \sqrt{1 - r}} dr = \frac{\Gamma_E \left(\frac{k}{2} \right)}{\Gamma_E \left(\frac{k+1}{2} \right)} \frac{\eta_e^k}{(k-2)!!}.
\]

\(^5\) Recall that

\[
\frac{\Gamma_E \left(\frac{1}{2} \right)}{\Gamma_E \left(\frac{1}{2} \right)} = \frac{(2\pi)^{\frac{k-1}{2}}}{(k-2)!!}.
\]
Then estimate (3.15) follows from some elementary computation. Indeed, if \(n \) is even then
\[
\left(\frac{n}{2} + 1 \right) ^ 2 = \frac{n}{2} \quad \text{and we have}
\]
\[
\sum_{k=n}^{\infty} \eta^k \frac{k!}{k!} = \sum_{k=n}^{\infty} \left(\frac{\eta^2}{2} \right)^k + \sum_{k=n+1}^{\infty} \left(\frac{\eta^{2k-1}}{(2k-1)!} \right)^k \leq \sum_{k=n}^{\infty} \left(\frac{\eta^2}{2} \right)^k + \sum_{k=n+1}^{\infty} \left(\frac{\eta^{2k-1}}{(2k-2)!} \right)^k =
\]
(since \((2k)! = 2^k k! \))
\[
= \sum_{k=n}^{\infty} \frac{1}{k!} \left(\frac{\eta^2}{2} \right)^k + \sum_{k=n+1}^{\infty} \frac{\eta^{2k+1}}{2^k k!} = f_n(\eta),
\]
with \(f_n \) as in (3.16) and using the fact that
\[
\sum_{k=n}^{\infty} \frac{\eta^k}{k!} = e^\eta \frac{n^n}{n!}.
\]
The case of \(n \) odd can be treated analogously and is omitted.

As a byproduct of the parametrix method, we obtain the following upper Gaussian estimate of the fundamental solution.

Theorem 3.10. For every \(\varepsilon > 0 \), we have
\[
\Gamma(z; \zeta) \leq \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} \left(1 + \eta \varepsilon \sqrt{2\pi(t - \tau)} \right) e^{\pi(t - \tau) \eta^2} \Gamma^{M + \varepsilon}(z; \zeta), \quad z, \zeta \in \mathbb{R}^{N+1}, \ t > \tau,
\]
with \(\eta \varepsilon \) as in (3.12).

Proof. By Theorem 3.6, we have
\[
\Gamma(z; \zeta) = Z(z; \zeta) + \sum_{k=1}^{\infty} \int_{\tau}^{t} \int_{\mathbb{R}^N} Z(z; w)(LZ)_k(w; \zeta) dw;
\]
therefore, as in (3.19), we get
\[
\Gamma(z; \zeta) \leq \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} \Gamma^{M + \varepsilon}(z; \zeta) \sum_{k=0}^{\infty} \left(\frac{\eta \varepsilon \sqrt{2\pi(t - \tau)}}{k!!} \right)^k
\]
and the thesis follows since
\[
\sum_{k=0}^{\infty} \frac{\eta^k}{k!!} \leq (1 + \eta) e^{\frac{\eta^2}{2}},
\]
for \(\eta > 0 \).
3.2 Backward parametrix expansion

We begin by stating the dual version of Lemma 3.4.

Lemma 3.11. For every \(\varepsilon > 0 \) and \(i, j = 1, \ldots, N \) it holds

\[
|\partial_{\xi_i} \Gamma_w(z; \zeta)| \leq \frac{1}{2\sqrt{\varepsilon(t - \tau)}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 1} \Gamma^{M + \varepsilon}(z; \zeta),
\]

\[
|\partial_{\xi_i \xi_j} \Gamma_w(z; \zeta)| \leq \frac{1}{\varepsilon(t - \tau)} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 2} \Gamma^{M + \varepsilon}(z; \zeta),
\]

for any \(z, \zeta, w \in \mathbb{R}^{N+1} \) with \(t > \tau \).

The proof is analogous to that of Lemma 3.4. In the sequel we assume the following additional hypothesis which allows to introduce the adjoint operator of \(L \):

\[[H3] \] the derivatives \(\partial_{x_i} a_{ij}, \partial_{x_i x_j} a_{ij}, \partial_{x_i} b_i \) are bounded functions.

We define as usual the adjoint operator \(\tilde{L} \) of \(L \):

\[
\tilde{L} u = \sum_{i,j=1}^{N} a_{ij} \partial_{x_i x_j} u + \sum_{i=1}^{N} \tilde{b}_i \partial_{x_i} u + \tilde{c} u + \partial_t u \tag{3.20}
\]

where

\[
\tilde{b}_i = -b_i + 2 \sum_{j=1}^{N} \partial_{x_j} a_{ij}, \quad \tilde{c} = c + \sum_{i,j=1}^{N} \partial_{x_i x_j} a_{ij} - \sum_{i=1}^{N} \partial_{x_i} b_i. \tag{3.21}
\]

Then we have

\[
\int_{\mathbb{R}^{N+1}} \varphi L \psi = \int_{\mathbb{R}^{N+1}} \psi L \varphi, \quad \forall \varphi, \psi \in C^\infty_0(\mathbb{R}^{N+1}),
\]

and the following classical result holds (cf. for instance [7] Cap. 1 Theor. 15):

Theorem 3.12. There exists a fundamental solution \(\tilde{\Gamma} \) of \(\tilde{L} \) and it holds

\[
\Gamma(z; \zeta) = \tilde{\Gamma}(\zeta; z), \quad z, \zeta \in \mathbb{R}^{N+1}, \ z \neq \zeta. \tag{3.22}
\]

For \(z \neq \zeta \), we define the backward parametrix

\[
P(z; \zeta) = \Gamma_z(z; \zeta). \tag{3.23}
\]

By Theorem 3.12 the backward parametrix satisfies

\[
P(z; \zeta) = \Gamma_z(z; \zeta) = \tilde{\Gamma}_z(\zeta; z), \tag{3.24}
\]

and, analogously to (3.8), we have

\[
\tilde{L}_z^{(c)} P(z; \zeta) = 0, \quad \text{for} \ z \neq \zeta.
\]

Next we recall Notation 3.3 and state the dual version of Lemma 3.5.
Lemma 3.13. Under hypothesis [H3], for every positive ε, we have
\[
\left| \tilde{L}^{(z)} P(z;\zeta) \right| \leq \frac{\tilde{\eta}_e}{\sqrt{t - \tau}} \Gamma^{M+\varepsilon}(z;\zeta), \quad \forall z, \zeta \in \mathbb{R}^{N+1}, \ t > \tau,
\] (3.25)
where
\[
\tilde{\eta}_e := \alpha N^2 \left(\frac{2}{\varepsilon} \right)^{\frac{3}{2}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2} + 1} + \tilde{\beta} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} \Gamma \frac{\alpha m}{M + \varepsilon} + \tilde{\gamma} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} \sqrt{t - \tau}
\] (3.26)
where
\[
\tilde{\beta} := \sup_{\zeta \in \mathbb{R}^{N+1}} |\tilde{b}_i(z)|, \quad \tilde{\gamma} := \sup_{\zeta \in \mathbb{R}^{N+1}} |\tilde{c}(z)|.
\]
The proof, analogous to that of Lemma 3.5, is based on Lemma 3.11 and is omitted.

Theorem 3.14. Assume hypotheses [H1], [H2] and [H3]. Then for every $\zeta \in \mathbb{R}^{N+1}$, the following expansion of the fundamental solution Γ holds
\[
\Gamma(z;\zeta) = P(z;\zeta) + \int_{\tau}^{t} \int_{\mathbb{R}^N} P(z;w)\Psi(w;\zeta) dw, \quad t > \tau,
\] (3.27)
where
\[
\Psi(z;\zeta) = \sum_{k=1}^{+\infty} (LP)_k(z;\zeta),
\] (3.28)
with
\[
(LP)_1(z;\zeta) = L^{(z)} P(z,\zeta),
\]
\[
(LP)_{k+1}(z;\zeta) = \int_{\tau}^{t} \int_{\mathbb{R}^N} L^{(z)} Z(z;w)(LP)_k(w;\zeta) dw,
\]
and, for every $T > 0$, the series in (3.14) converges uniformly in the strip $\mathbb{R}^N \times [\tau, \tau + T]$. Moreover, for every positive ε, we have the following estimate for the approximation truncated at the n-th term:
\[
\left| \Gamma(z;\zeta) - P(z;\zeta) - \sum_{k=1}^{n-1} \int_{\tau}^{t} \int_{\mathbb{R}^N} P(z;w)(LP)_k(w;\zeta) dw \right| \leq \sqrt{\frac{2}{\pi}} \left(\frac{M + \varepsilon}{m} \right)^{\frac{N}{2}} f_n \left(\frac{\tilde{\eta}_e \sqrt{2\pi(t - \tau)}}{\Gamma(M+\varepsilon)(z;\zeta)} \right)
\]
for $t > \tau$, where $\tilde{\eta}_e$ is defined in (3.26) and f_n in (3.16). As a consequence, the solution to the Cauchy problem (3.17) has an expansion of the form (2.14)-(2.15).

Proof. Proceeding as in the “forward case”, one can prove that
\[
\tilde{\Gamma}(z;\zeta) = \tilde{\Gamma}_z(z;\zeta) + \int_{\tau}^{t} \int_{\mathbb{R}^N} \tilde{\Gamma}_w(\zeta;w) \tilde{\Phi}(w;\zeta) dw, \quad t > \tau,
\] (3.29)
where

\[\tilde{\Phi}(\zeta; z) = \sum_{k=1}^{+\infty} I_k(\zeta; z), \]

(3.30)

with

\[I_1(\zeta; z) = \tilde{L}(\zeta) \tilde{\Gamma}_z(\zeta; z), \]

\[I_{k+1}(\zeta; z) = \int_0^t \int_{\mathbb{R}^N} \tilde{L}(\zeta) \tilde{\Gamma}_w(\zeta; w) I_k(w; z) dw, \]

and the series converges uniformly on the strips. Moreover an error estimate analogous to (3.15) holds. In order to conclude the proof, it suffices to invoke Theorem 3.12 and prove that the terms of the expansions (3.27)-(3.28) and (3.29)-(3.30) coincide, that is

\[\int_0^t \int_{\mathbb{R}^N} P(z; w)(LP)_k(w; \zeta) dw = \int_0^t \int_{\mathbb{R}^N} \tilde{\Gamma}_w(\zeta; w) I_k(w; z) dw \]

(3.31)

for every \(k \in \mathbb{N} \).

For \(k = 1 \), recalling (3.24), we have

\[\int_0^t \int_{\mathbb{R}^N} \tilde{\Gamma}_w(\zeta; w) I_1(w; z) dw = \int_0^t \int_{\mathbb{R}^N} P(w; \zeta) \tilde{L}(w) P(z; w) dw, \]

so that the thesis follows immediately integrating by parts since we have no contribution at borders. Indeed, denoting \(w = (y, s) \), formally we have

\[\int_0^t \int_{\mathbb{R}^N} \Gamma_w(w; \zeta) \partial_s \Gamma_z(z; w) dw = \tilde{\Gamma} - \int_0^t \int_{\mathbb{R}^N} \partial_s \Gamma_w(w; \zeta) \Gamma_z(z; w) dw, \]

where

\[\tilde{\Gamma} = \int_{\mathbb{R}^N} \Gamma_{(y,t)}(y, t; \xi, \tau) \Gamma_{(x,t)}(x, t; y, t) dy - \int_{\mathbb{R}^N} \Gamma_{(y,\tau)}(y, \tau; \xi, \tau) \Gamma_{(x,t)}(x, t; y, \tau) dy = 0 \]

since \(\Gamma_{(x,t)}(x, t; y, t) = \delta_x(y) \) and \(\Gamma_{(y,\tau)}(y, \tau; \xi, \tau) = \delta_\xi(y) \). On the other hand the above argument can be made rigorous by performing the integration by parts on a thinner strip \(S_{r+\delta,t-\delta} \) and then applying the dominated convergence theorem as \(\delta \to 0^+ \) combined with the summability estimate (3.25).

For \(k = 2 \), we have

\[\int_0^t \int_{\mathbb{R}^N} \Gamma_{(z,t)}(z_0; \zeta) \int_{z_0}^{t_0} \int_{\mathbb{R}^N} \tilde{L}(z_0) \Gamma_{z_1}(z_1; z_0) \tilde{\Gamma}_z(z; z_1) dz_1 dz_0 = \int_0^t \int_{\mathbb{R}^N} \Gamma_{(z,t)}(z_0; \zeta) \int_{z_0}^{t_0} \int_{\mathbb{R}^N} \Gamma_{z_1}(z_1; z_0) \tilde{\Gamma}_z(z; z_1) dz_1 dz_0 + \int_{\mathbb{R}^N} \Gamma_{(y,t_0)}(y, t_0; z_0) \tilde{L}(y,t_0) \Gamma_z(z; y, t_0) dy \int_{z_0}^{t_0} \equiv J_1 + J_2, \]
where, using again that $\Gamma_{(y,t_0)}(y, t_0; z_0) = \delta_{z_0}(y)$, we get

$$J_2 = \int_t^\tau \int_{\mathbb{R}^N} \Gamma_{z_0}(z_0; \zeta) \tilde{L}(z_0) \Gamma_y(z; z_0) dz_0 =$$

(proceeding as in the case $k = 1$)

$$= \int_t^\tau \int_{\mathbb{R}^N} L(z_0) \Gamma_{z_0}(z_0; \zeta) \Gamma_y(z; z_0) dz_0;$$
on the other hand

$$J_1 = \int_t^\tau \int_{\mathbb{R}^N} \Gamma_{z_0}(z_0; \zeta) \tilde{L}(z_0) \int_{t_0}^t \int_{\mathbb{R}^N} \Gamma_{z_1}(z_1; z_0) \tilde{L}(z_1) \Gamma_y(z; z_1) dz_1 dz_0 =$$

(by parts as before)

$$= \int_t^\tau \int_{\mathbb{R}^N} L(z_0) \Gamma_{z_0}(z_0; \zeta) \int_{t_0}^t \int_{\mathbb{R}^N} L(z_1) \Gamma_{z_1}(z_1; z_0) \Gamma_y(z; z_1) dz_1 dz_0$$

$$- \int_{\mathbb{R}^N} \Gamma_{(y,\tau)}(y, \tau; \xi, \tau) \int_t^\tau \int_{\mathbb{R}^N} L(z_1) \Gamma_{z_1}(z_1; y, \tau) \Gamma_y(z; z_1) dz_1 dy =$$

(since $\Gamma_{(y,\tau)}(y, \tau; \xi, \tau) = \delta_{\xi}(y)$)

$$= \int_t^\tau \int_{\mathbb{R}^N} L(z_0) \Gamma_{z_0}(z_0; \zeta) \int_{t_0}^t \int_{\mathbb{R}^N} L(z_1) \Gamma_{z_1}(z_1; z_0) \Gamma_y(z; z_1) dz_1 dz_0 - \int_t^\tau \int_{\mathbb{R}^N} L(z_1) \Gamma_{z_1}(z_1; \zeta) \Gamma_y(z; z_1) dz_1.$$

Combining the expressions of J_1 and J_2, eventually we obtain

$$\int_t^\tau \int_{\mathbb{R}^N} \Gamma_{z_0}(z_0; \zeta) \int_{t_0}^t \int_{\mathbb{R}^N} \tilde{L}(z_0) \Gamma_{z_1}(z_1; z_0) \tilde{L}(z_1) \Gamma_y(z; z_1) dz_1 dz_0$$

$$= \int_t^\tau \int_{\mathbb{R}^N} L(z_0) P(z_0; \zeta) \int_{t_0}^t \int_{\mathbb{R}^N} L(z_1) P(z_1; z_0) P(z; z_1) dz_1 dz_0;$$

which concludes the proof. As before the previous argument should be made rigorous by some approximating procedure. The general case can be straightforwardly achieved by induction. \qed

4 A numerical test

(Note: this section is still very preliminary and incomplete.)

In this section we test the parametrix expansions on the shifted lognormal model (see [9] and [10]), a simple approach alternative to the Black&Scholes model. The shifted lognormal is a computable model which produces one sided volatility smiles (better known as smirks) when used for pricing options.

The SDE for the model is

$$dS_t = \sigma(S_t - a)dW_t$$

18
where \(a \) is a nonnegative constant which is interpreted as a portion of the firm’s capital not subject to risk. Suppose, for instance, that the firm whose share has a price \(S \) is conceived as a fund partly invested in default free bonds and partly invested in other firms’ shares.

The relevant feature of the shifted lognormal model is that its risk neutral distribution is easily computable and, in fact, it corresponds to a lognormal shifted by the constant \(a \).

In order to fix the parameters for our numerical experiment we set \(\sigma = 0.3, \ a = 0.5, \ S_0 = 1 \) and \(t = 1 \). The interpretation of these values is as follows: the time unit is one year, the value of the firm at the beginning of the year, evaluated forward for year end, is 1 and half of this forward value is given by the riskless investment. In Figure 1 we compare the shifted lognormal distribution, the lognormal distribution with \(\sigma = 0.3 \) and the \(P \) and \(Z \) parametrices (that is: the zero order parametrix approximation of the shifted lognormal).

![Figure 1: Zero order approximation](image)

As we can see, while the lognormal distribution is quite different that the shifted lognormal, the \(P \) and, better, the \(Z \) approximation to the shifted lognormal yield a very good approximation. It is easy to understand what is happening. The shifted lognormal shows a percentage volatility going rapidly to 0 for \(S \downarrow a \) while for \(S \uparrow \infty \) the percentage volatility rapidly becomes constant and identical to the lognormal percentage volatility (30%).

In the shifted lognormal this is accomplished by shifting the origin of the distribution by \(a \) and
then using a constant percentage volatility. In the Z-approximation this behaviour is mimicked by the use of a “volatility” dependent on S which goes to 0 as $S \downarrow a$. On the contrary the P-approximation, more roughly, “freezes” the volatility to a S_0 dependent value given by $\sigma(S_0 - a)/S_0$ (in this case 15%).

References

